

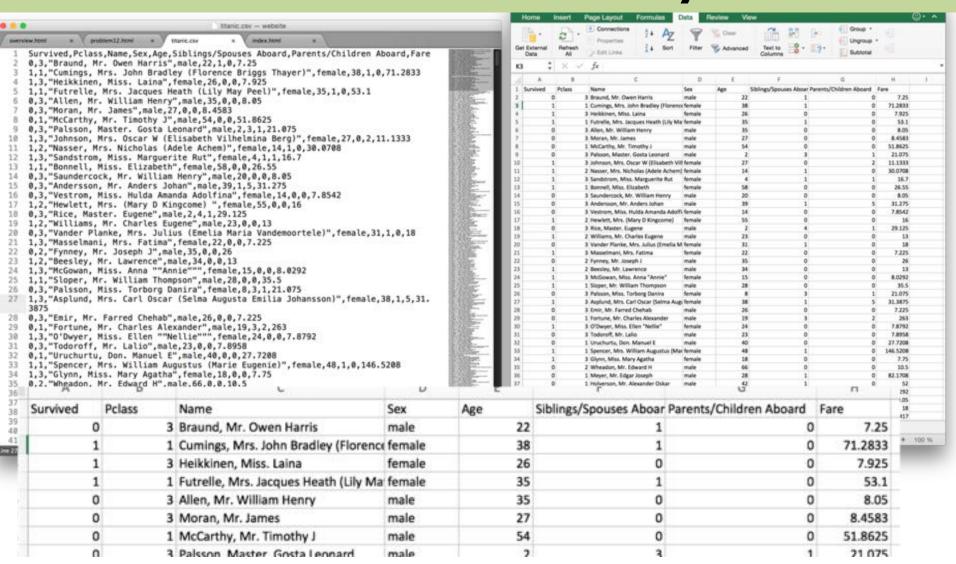
Properties of Joints:

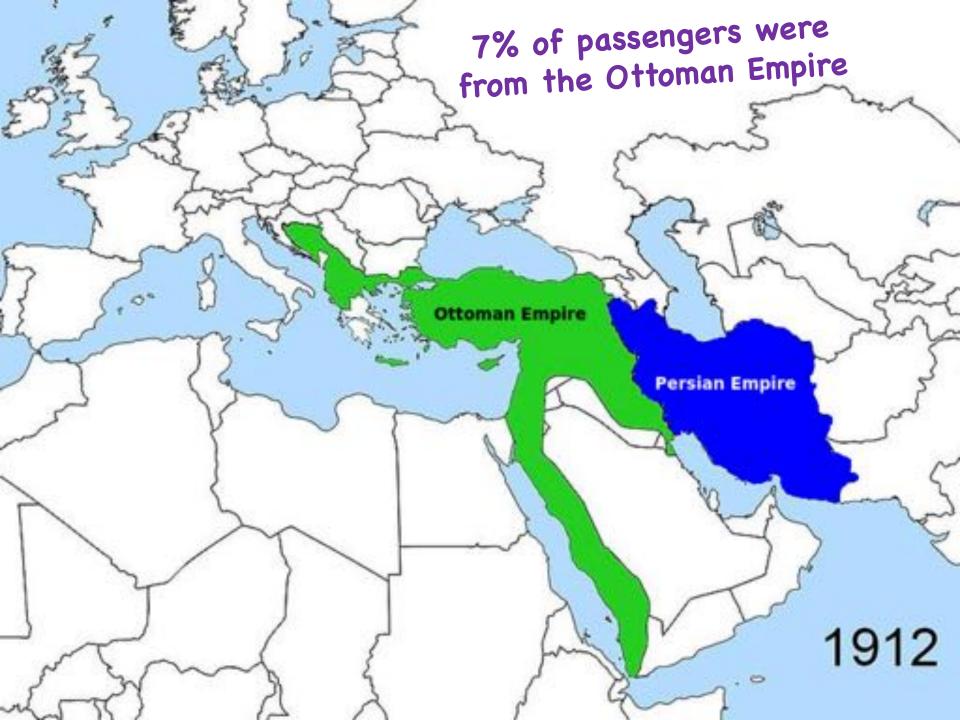
Expectation, Independence, Convolution

Chris Piech

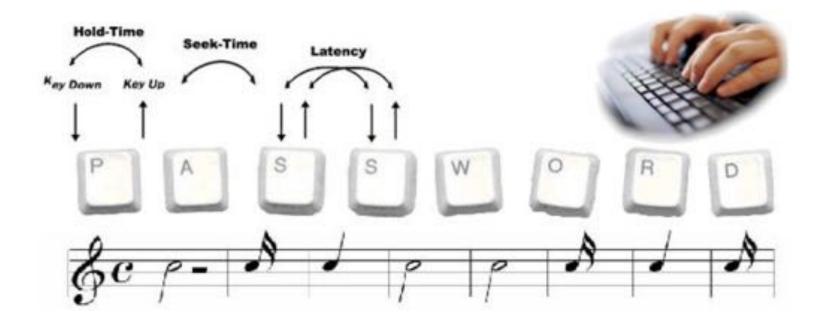
CS109, Stanford University

Titanic Probability





Biometric Keystrokes

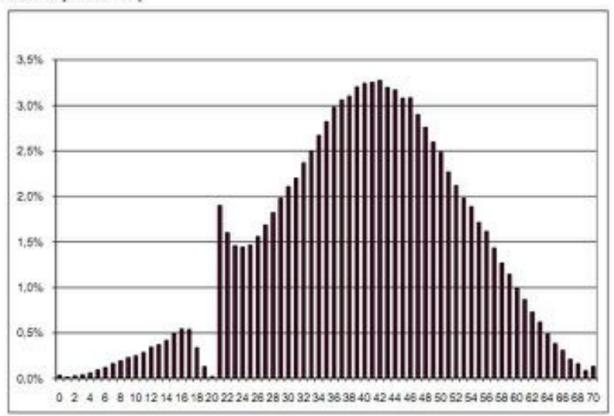


Altruism?

Scores for a standardized test that students in Poland are required to pass before moving on in school

See if you can guess the minimum score to pass the test.

2.1. Poziom podstawowy



Wykres 1. Rozkład wyników na poziomie podstawowym

Joint Random Variables

Use a joint table, density function or CDF to solve probability question

Think about **conditional** probabilities with joint variables (which might be continuous)

Use and find **expectation** of multiple RVS

Use and find independence of multiple RVS

What happens when you add random variables?

All the Bayes Belong to Us

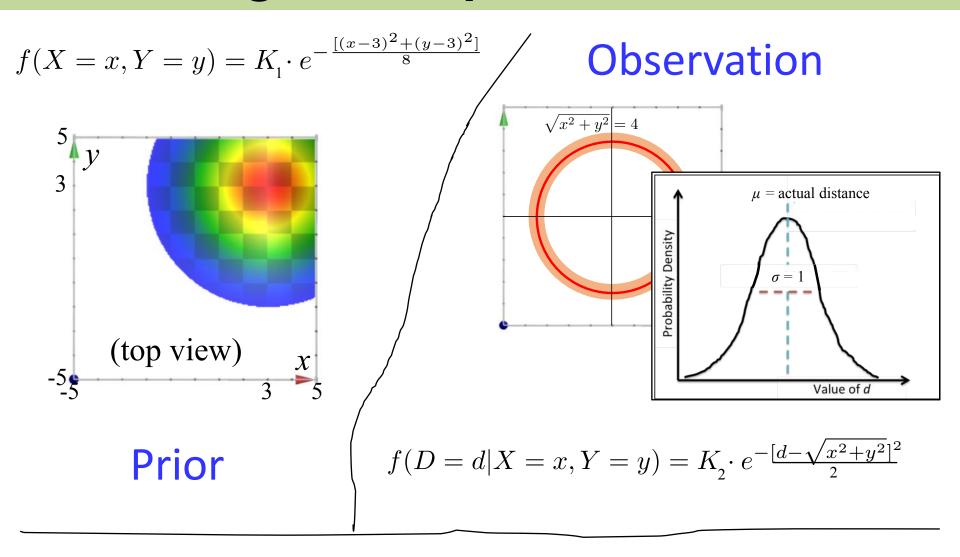
M,N are discrete. X, Y are continuous

$$\begin{array}{ll} \text{OG BaYes} & p_{\scriptscriptstyle M|N}(m|n) = \frac{P_{\scriptscriptstyle N|M}(n|m)p_{\scriptscriptstyle M}(m)}{p_{\scriptscriptstyle N}(n)} \\ \\ \text{Mix BaYes} & f_{\scriptscriptstyle X|N}(x|n) = \frac{P_{\scriptscriptstyle N|X}(n|x)f_{\scriptscriptstyle X}(x)}{P_{\scriptscriptstyle N}(n)} \\ \\ \text{Mix BaYes} & p_{\scriptscriptstyle N|X}(n|x) = \frac{f_{\scriptscriptstyle X|N}(x|n)p_{\scriptscriptstyle N}(n)}{f_{\scriptscriptstyle X}(x)} \\ \\ \text{Mix Continuous} & f_{\scriptscriptstyle X|Y}(x|y) = \frac{f_{\scriptscriptstyle Y|X}(y|x)f_{\scriptscriptstyle X}(x)}{f_{\scriptscriptstyle Y}(y)} \end{array}$$

Tracking in 2D Space?

$$f(X = x, Y = y | D = d)$$

Tracking in 2D Space: New Belief



What is your *new* belief for the location of the object being tracked? Your joint probability density function can be expressed with a constant

Tracking in 2D Space: New Belief

$$f(X = x, Y = y | D = 4) = \frac{f(D = 4 | X = x, Y = y) \cdot f(X = x, Y = y)}{f(D = 4)}$$

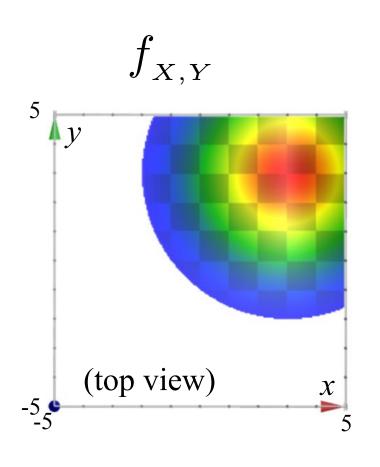
$$= \frac{K_1 \cdot e^{-\frac{[4 - \sqrt{x^2 + y^2})^2]}{2} \cdot K_2 \cdot e^{-\frac{[(x - 3)^2 + (y - 3)^2]}{8}}}{f(D = 4)}$$

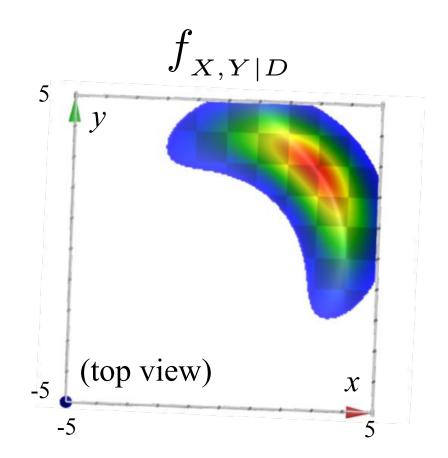
$$= \frac{K_3 \cdot e^{-\left[\frac{[4 - \sqrt{x^2 + y^2})^2]}{2} + \frac{[(x - 3)^2 + (y - 3)^2]}{8}\right]}{f(D = 4)}$$

$$= K_4 \cdot e^{-\left[\frac{(4 - \sqrt{x^2 + y^2})^2}{2} + \frac{[(x - 3)^2 + (y - 3)^2]}{8}\right]}$$

For your notes...

Tracking in 2D Space: Posterior



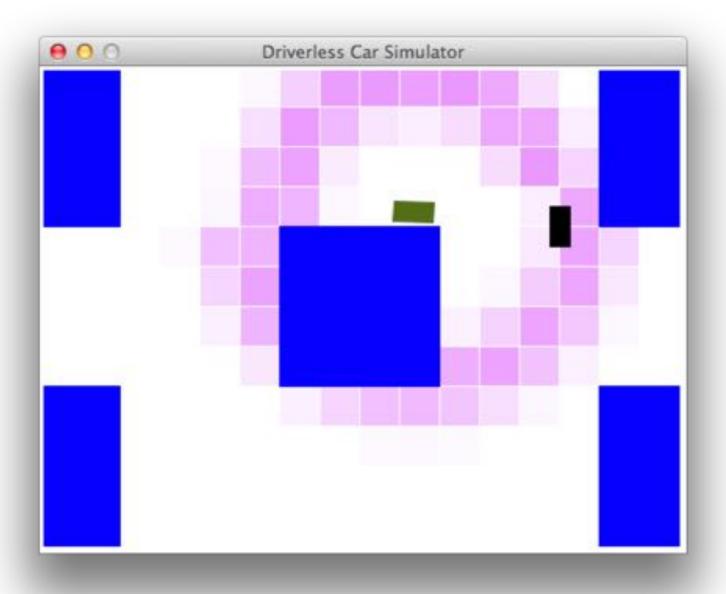


Prior

Posterior

$$= K_4 \cdot e^{-\left[\frac{(4-\sqrt{x^2+y^2})^2}{2} + \frac{[(x-3)^2+(y-3)^2]}{8}\right]}$$

Tracking in 2D Space: CS221



Expectation of Multiple RVs

Joint Expectation

$$E[X] = \sum_{x} xp(x)$$

- Expectation over a joint isn't nicely defined because it is not clear how to compose the multiple variables:
 - Add them? Multiply them?
- Lemma: For a function g(X,Y) we can calculate the expectation of that function:

$$E[g(X,Y)] = \sum_{x,y} g(x,y)p(x,y)$$

Recall, this also holds for single random variables:

$$E[g(X)] = \sum g(x)p(x)$$

Expected Values of Sums

Big deal lemma: first stated without proof

$$E[X + Y] = E[X] + E[Y]$$

Generalized:
$$E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i]$$

Holds regardless of dependency between X_i 's

Skeptical Chris Wants a Proof!

Let
$$g(X,Y) = [X + Y]$$

$$E[X+Y] = E[g(X,Y)] = \sum_{x,y} g(x,y) p(x,y) \qquad \text{What a useful lemma}$$

$$= \sum_{x,y} [x+y] p(x,y) \qquad \text{By the definition of } g(x,y)$$

$$= \sum_{x,y} x p(x,y) + \sum_{x,y} y p(x,y)$$

$$\text{Change the sum of } (x,y) \text{ into separate sums} \qquad = \sum_{x} x \sum_{y} p(x,y) + \sum_{y} y \sum_{x} p(x,y)$$

$$= \sum_{x} x \sum_{y} p(x,y) + \sum_{y} y \sum_{x} p(x,y)$$
 That is the definition of marginal probability
$$= \sum_{x} x p(x) + \sum_{y} y p(y)$$
 That is the definition of marginal probability
$$= E[X] + E[Y]$$

expectation

Independent Discrete Variables

 Two discrete random variables X and Y are called <u>independent</u> if:

$$p(x,y) = p_X(x)p_Y(y) \text{ for all } x, y$$
$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$

- Intuitively: knowing the value of X tells us nothing about the distribution of Y (and vice versa)
 - If two variables are <u>not</u> independent, they are called <u>dependent</u>
- Similar conceptually to independent events, but we are dealing with multiple <u>variables</u>
 - Keep your events and variables distinct (and clear)!

Is Year Independent of Lunch?

	Joint Proba				
	Dining Hall	Eating Club	Cafe	Self-made	Marginal Year
Freshman	0.03	0.00	0.02	0.00	0.05
Sophomore	0.50	0.15	0.03	0.03	0.68
Junior	0.08	0.02	0.02	0.02	0.12
Senior	0.02	0.05	0.01	0.01	0.08
5+	0.02	0.01	0.05	0.05	0.07
Marginal Status	0.65	0.22	0.12	0.11	

For all values of Year, Status:

Is Year Independent of Lunch?

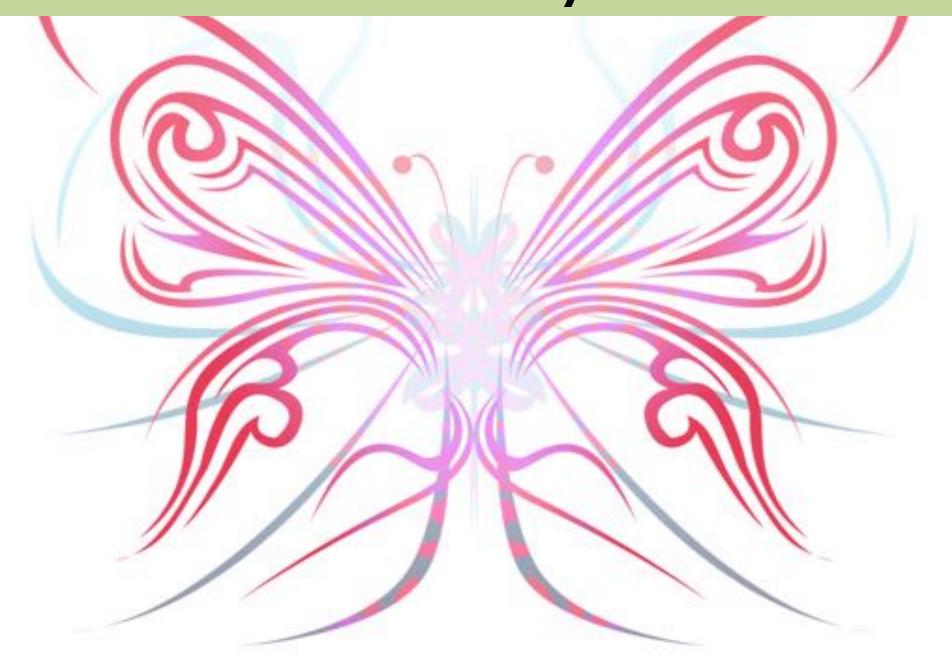
	Joint Proba				
	Dining Hall	Eating Club	Cafe	Self-made	Marginal Year
Freshman	0.03	0.00	0.02	0.00	0.05
Sophomore	0.50	0.15	0.03	0.03	0.68
Junior	0.08	0.02	0.02	0.02	0.12
Senior	0.02	0.05	0.01	0.01	0.08
5+	0.02	0.01	0.05	0.05	0.07
Marginal Status	0.65	0.22	0.12	0.11	

For all values of Year, Status:

P(Year = y, Lunch= s) = P(Year = y)P(Lunch = s)

$$0.03$$
 0.68 0.12

Aside: Butterfly Effect



Coin Flips

- Flip coin with probability p of "heads"
 - Flip coin a total of n + m times
 - Let X = number of heads in first n flips
 - Let Y = number of heads in next m flips

$$P(X = x, Y = y) = \binom{n}{x} p^{x} (1-p)^{n-x} \binom{m}{y} p^{y} (1-p)^{m-y}$$

$$= P(X = x)P(Y = y)$$

- X and Y are independent
- Let Z = number of total heads in n + m flips
- Are X and Z independent?
 - ⋄ What if you are told Z = 0?

Independent Continuous Variables

 Two continuous random variables X and Y are called <u>independent</u> if:

$$P(X \le a, Y \le b) = P(X \le a) P(Y \le b)$$
 for any a, b

Equivalently:

$$F_{X,Y}(a,b) = F_X(a)F_Y(b)$$
 for all a,b
 $f_{X,Y}(a,b) = f_X(a)f_Y(b)$ for all a,b

More generally, joint density factors separately:

$$f_{XY}(x,y) = h(x)g(y)$$
 where $-\infty < x, y < \infty$

Is the Blur Distribution Independent?

In image processing, a Gaussian blur is the result of blurring an image by a Gaussian function. It is a widely used effect in graphics software, typically to reduce image noise.

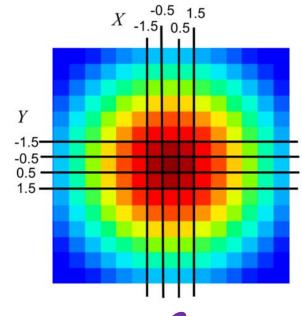
Gaussian blurring with StDev = 3, is based on a joint probability distribution:

Joint PDF

$$f_{X,Y}(x,y) = \frac{1}{2\pi \cdot 3^2} e^{-\frac{x^2 + y^2}{2 \cdot 3^2}}$$

Joint CDF

$$F_{X,Y}(x,y) = \Phi\left(\frac{x}{3}\right) \cdot \Phi\left(\frac{y}{3}\right)$$



Used to generate this weight matrix

Pop Quiz (just kidding)

Consider joint density function of X and Y:

$$f_{X,Y}(x,y) = 6e^{-3x}e^{-2y}$$
 for $0 < x, y < \infty$

Are X and Y independent? Yes!

Let
$$h(x) = 3e^{-3x}$$
 and $g(y) = 2e^{-2y}$, so $f_{X,Y}(x,y) = h(x)g(y)$

Consider joint density function of X and Y:

$$f_{X,Y}(x,y) = 4xy$$
 for $0 < x, y < 1$

Are X and Y independent? Yes!

Let
$$h(x) = 2x$$
 and $g(y) = 2y$, so $f_{X,Y}(x,y) = h(x)g(y)$

- Now add constraint that: 0 < (x + y) < 1
- Are X and Y independent? No!
 - Cannot capture constraint on x + y in factorization!

What happens when you add random variables?

Zero Sum Games

Motivating Idea: Zero Sum Games

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N(S, 200^2)$
- The team with the higher sampled ability wins.

Arpad Elo

$$A_B \sim \mathcal{N}(1555, 200^2)$$
 $A_W \sim \mathcal{N}(1797, 200^2)$

$$P(\text{Warriors win}) = P(A_W > A_B)$$

Motivating Idea: Zero Sum Games

$$A_W \sim \mathcal{N}(1797, 200^2)$$

$$A_B \sim \mathcal{N}(1555, 200^2)$$

$$P(\text{Warriors win}) = P(A_W > A_B)$$

$$P(\text{Warriors win}) = P(A_W - A_B > 0)$$

In class we solved this by sampling. But that is a bit of a "cheat" and is computationally expensive.

Sums (or subtractions) of random variables show up all the time. But we have no explicit tools for dealing with them!

Challenge: try and come up with the way to solve this by the end of class

Sum of Independent Binomials

- Let X and Y be independent binomials with the same value for p:
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
- Intuition:
 - X has n₁ trials and Y has n₂ trials
 - Each trial has same "success" probability p
 - Define Z to be n₁ + n₂ trials, each with success prob. p
 - $Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y

If only it were always that simple

The Insight to Convolution

Imagine a game where each player *independently* scores between 0 and 100 points:

Let X be the amount of points you score. Let Y be the amount of points your opponent scores. Let's say you know P(X = x) and P(Y = y).

What is the probability of a tie?

$$P(\text{tie}) = \sum_{i=0}^{100} P(X = i, Y = i)$$
$$= \sum_{i=0}^{100} P(X = i)P(Y = i)$$

The Insight to Convolution Proofs

What is the probability that X + Y = n?

$$P(X + Y = n)?$$

$$P(X + Y = n) = \sum_{i=0}^{n} P(X = i, Y = n - i)$$

X	Y	i	
0	n	0	P(X=0,Y=n)

1
$$P(X = 1, Y = n - 1)$$

$$P(X = 2, Y = n - 2)$$

$$P(X=n,Y=0)$$

The Insight to Convolution Proofs

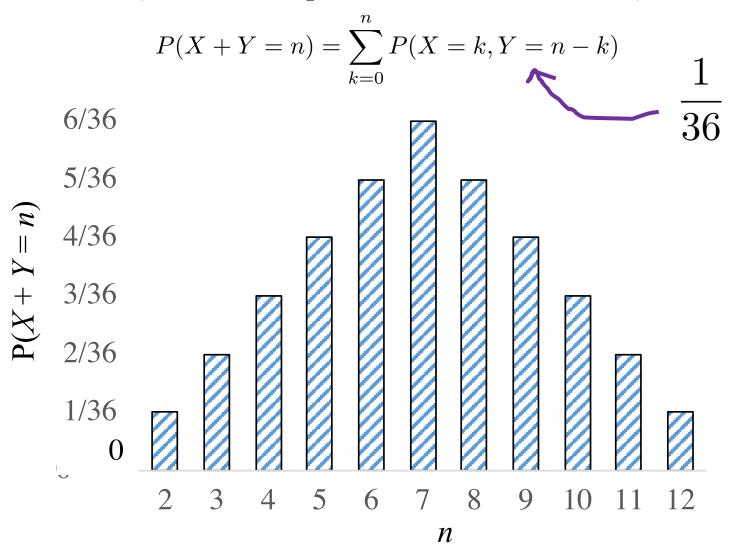
$$P(X+Y=n)?$$

Since this is the OR or mutually exclusive events
$$P(X+Y=n) = \sum_{k=0}^n P(X=k,Y=n-k)$$

If the random variables are independent
$$= \sum_{k=0}^{n} P(X=k)P(Y=n-k)$$

Sum of Two Dice

Let *X*+*Y* be the value of the sum of two dice (aka two independent random variables)



Sum of Independent Poissons

Recall the Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Sum of Independent Poissons

- Let X and Y be independent random variables
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
- Proof: (just for reference)
 - Rewrite (X + Y = n) as (X = k, Y = n k) where $0 \le k \le n$

$$P(X+Y=n) = \sum_{k=0}^{n} P(X=k, Y=n-k) = \sum_{k=0}^{n} P(X=k)P(Y=n-k)$$

$$=\sum_{k=0}^{n}e^{-\lambda_{1}}\frac{\lambda_{1}^{k}}{k!}e^{-\lambda_{2}}\frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-(\lambda_{1}+\lambda_{2})}\sum_{k=0}^{n}\frac{\lambda_{1}^{k}\lambda_{2}^{n-k}}{k!(n-k)!}=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\lambda_{1}^{k}\lambda_{2}^{n-k}$$

- Noting Binomial theorem: $(\lambda_1 + \lambda_2)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$ $P(X+Y=n) = \frac{e^{-(\lambda_1 + \lambda_2)}}{n!} (\lambda_1 + \lambda_2)^n$ so, $X+Y=n \sim \text{Poi}(\lambda_1 + \lambda_2)$

Reference: Sum of Independent RVs

- Let X and Y be independent Binomial RVs
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
 - More generally, let $X_i \sim Bin(n_i, p)$ for $1 \le i \le N$, then

$$\left(\sum_{i=1}^{N} X_i\right) \sim \operatorname{Bin}\left(\sum_{i=1}^{N} n_i, p\right)$$

- Let X and Y be independent Poisson RVs
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
 - More generally, let $X_i \sim Poi(\lambda_i)$ for $1 \le i \le N$, then

$$\left(\sum_{i=1}^{N} X_{i}\right) \sim \operatorname{Poi}\left(\sum_{i=1}^{N} \lambda_{i}\right)$$

Sum of Independent Normals

- Let X and Y be independent random variables
 - $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$
 - $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Generally, have n independent random variables
 X_i ~ N(μ_i, σ_i²) for i = 1, 2, ..., n:

$$\left(\sum_{i=1}^{n} X_i\right) \sim N\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

Virus Infections

- Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with p = 0.1
 - P2: 100 people, each independently infected with p = 0.4
 - Question: Probability of more than 40 infections?

Sanity check: Should we use the Binomial Sum-of-RVs shortcut?

- A. YES!
- B. NO!
- C. Other/none/more

Virus Infections

- Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with p = 0.1
 - P2: 100 people, each independently infected with p = 0.4
 - A = # infected in P1 A ~ Bin(50, 0.1) \approx X ~ N(5, 4.5)
 - B = # infected in P2 B ~ Bin(100, 0.4) \approx Y ~ N(40, 24)
 - What is P(≥ 40 people infected)?
 - $P(A + B \ge 40) \approx P(X + Y \ge 39.5)$
 - $X + Y = W \sim N(5 + 40 = 45, 4.5 + 24 = 28.5)$

$$P(W \ge 39.5) = P\left(\frac{W - 45}{\sqrt{28.5}} > \frac{39.5 - 45}{\sqrt{28.5}}\right) = 1 - \Phi(-1.03) \approx 0.8485$$

Linear Transform

$$X \sim N(\mu, \sigma^2)$$

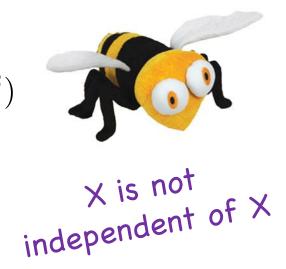
$$Y = X + X = 2 \cdot X$$

$$Y \sim N(2\mu, 4\sigma^2)$$

$$Y = X + X = 2 \cdot X$$

$$X + X \sim N(\mu + \mu, \sigma^2 + \sigma^2)$$

$$Y \sim N(2\mu, 2\sigma^2)$$
 x is



Motivating Idea: Zero Sum Games

How it works:

- Each team has an "ELO" score S, calculated based on their past performance.
- Each game, the team has ability $A \sim N(S, 200^2)$
- The team with the higher sampled ability wins.

Arpad Elo

$$A_B \sim \mathcal{N}(1555, 200^2)$$
 $A_W \sim \mathcal{N}(1797, 200^2)$

$$P(\text{Warriors win}) = P(A_W > A_B)$$

Motivating Idea: Zero Sum Games

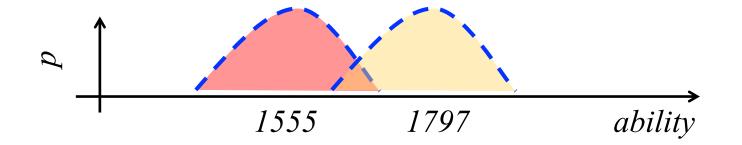
$$A_B \sim \mathcal{N}(1555, 200^2)$$
 $A_W \sim \mathcal{N}(1797, 200^2)$ $P(\text{Warriors win}) = P(A_W > A_B)$ $= P(A_W - A_B > 0)$

$$D = A_W - A_B$$

$$D \sim N(\mu = 1795 - 1555, \sigma_2 = 2 \cdot 200^2)$$

$$\sim N(\mu = 240, \sigma_2 = 283)$$

$$P(D > 0) = F_D(0) = 1 - \Phi\left(\frac{0 - 240}{283}\right) \approx 0.65$$



Convolution of Probability Distributions

We talked about sum of Binomial, Normal and Poisson...who's missing from this party?

Uniform.

Summation: not just for the 1%

Dance, Dance Convolution

Let X and Y be independent random variables

Probability Density Function (PDF) of X + Y:

$$f_{X+Y}(a) = \int_{y=-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

• In discrete case, replace $\int_{y=-\infty}^{\infty}$ with \sum_{y} , and f(y) with p(y)

Dance, Dance Convolution

Let X and Y be independent random variables

Cumulative Distribution Function (CDF) of X + Y:

$$F_{X+Y}(a) = P(X+Y \le a)$$

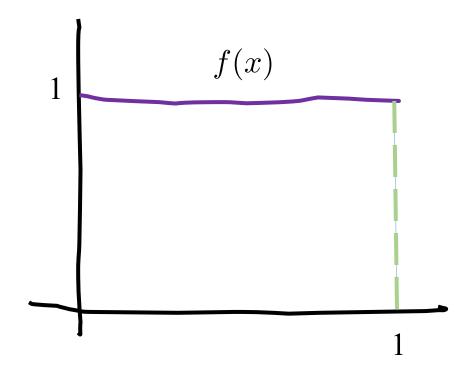
$$+ = \iint_{x+y \le a} f_X(x) f_Y(y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{a-y} f_X(x) dx f_Y(y) dy$$

$$= \int_{y=-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$
PDF of Y

• In discrete case, replace $\int_{y=-\infty}^{\infty}$ with \sum_{y} , and f(y) with p(y)

Sum of Independent Uniforms

- Let X and Y be independent random variables
 - X ~ Uni(0, 1) and Y ~ Uni(0, 1) $\rightarrow f(x) = 1$ for $0 \le x \le 1$



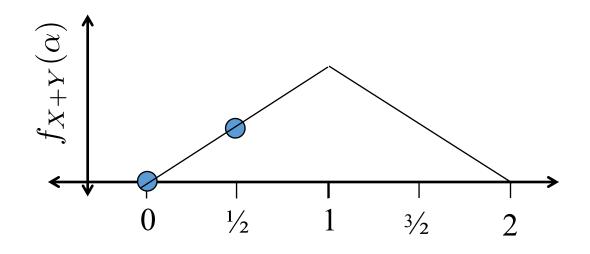
For both X and Y

$1 < \alpha < 2$

 $X \sim \mathrm{Uni}(0,1)$ $Y \sim \mathrm{Uni}(0,1)$ X and Y are independent

$$f_{X+Y}(\alpha)$$
?

$$f_{X+Y}(a) = \begin{cases} a & 0 \le a \le 1\\ 2-a & 1 < a \le 2\\ 0 & \text{otherwise} \end{cases}$$



That's all folks!